(13m^4+2)+(m^4n^2t^2-2m^4)-(-13m^2n^3+5m^4)=0

Simple and best practice solution for (13m^4+2)+(m^4n^2t^2-2m^4)-(-13m^2n^3+5m^4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (13m^4+2)+(m^4n^2t^2-2m^4)-(-13m^2n^3+5m^4)=0 equation:


Simplifying
(13m4 + 2) + (m4n2t2 + -2m4) + -1(-13m2n3 + 5m4) = 0

Reorder the terms:
(2 + 13m4) + (m4n2t2 + -2m4) + -1(-13m2n3 + 5m4) = 0

Remove parenthesis around (2 + 13m4)
2 + 13m4 + (m4n2t2 + -2m4) + -1(-13m2n3 + 5m4) = 0

Reorder the terms:
2 + 13m4 + (-2m4 + m4n2t2) + -1(-13m2n3 + 5m4) = 0

Remove parenthesis around (-2m4 + m4n2t2)
2 + 13m4 + -2m4 + m4n2t2 + -1(-13m2n3 + 5m4) = 0
2 + 13m4 + -2m4 + m4n2t2 + (-13m2n3 * -1 + 5m4 * -1) = 0
2 + 13m4 + -2m4 + m4n2t2 + (13m2n3 + -5m4) = 0

Reorder the terms:
2 + 13m2n3 + 13m4 + -2m4 + -5m4 + m4n2t2 = 0

Combine like terms: 13m4 + -2m4 = 11m4
2 + 13m2n3 + 11m4 + -5m4 + m4n2t2 = 0

Combine like terms: 11m4 + -5m4 = 6m4
2 + 13m2n3 + 6m4 + m4n2t2 = 0

Solving
2 + 13m2n3 + 6m4 + m4n2t2 = 0

Solving for variable 'm'.

The solution to this equation could not be determined.

See similar equations:

| 3(5x-2)-6x=-3(3x+2) | | (4+3x^2+8x^3)+(-7x^3+12x^5+6x^2)=0 | | 40=2m+30 | | 5v-8=-33 | | (5+7x^3+3x^2)+(-12+5x+6x^2)=0 | | 4X+11=5+2X | | -29=5x-4 | | 9=-2(a-3) | | -3r-4(r+2)=11 | | 13x-5=7x-33 | | -2(x-8)-5=1 | | (-3x^3y-5/2y^2)*(-5/2y^2+3x^3y) | | 12(0.5-5)=-6(-x+10) | | z^2-4iz+2i-4=0 | | 3(2/3z-1)=5 | | s=-2s-9 | | 4+7-4d=4d-5 | | -q-5=1-2q | | p-7=-8p-7 | | y=.75(-2)-2.75 | | -5r+6=-7r+10 | | w=w^2 | | x+8(.75x-2.75)=3 | | y=2(8)+10 | | -6x+(2x+10)=-22 | | 3/11x=-5 | | y=-2(-3)-2 | | -3x-(-2x-2)=5 | | 5n+8=23whatisn | | 4x+9y=38 | | 9+20=711 | | -3x/4=-5/4+(-x+2)/3 |

Equations solver categories